Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jan Moncol, ${ }^{\text {a }}$ * Jana Kavalírová, ${ }^{\text {a }}$ Tadeusz Lis ${ }^{\text {b }}$ and Dušan Valigura ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Inorganic Chemistry, Slovak Technical University, Radlinského 9, SK-812 37, Bratislava, Slovakia, and ${ }^{\mathbf{b}}$ Faculty of Chemistry, University of Wrocław, 14 Joliot-Curie St, 50383 Wrocław, Poland

Correspondence e-mail: jan.moncol@stuba.sk

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.031$
$w R$ factor $=0.081$
Data-to-parameter ratio $=19.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Tetrakis(μ-2-nitrobenzoato- $\kappa^{2} O: O^{\prime}$)bis[aquacopper(II)] ethanol disolvate

The title complex, $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{4}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$, forms a dimer of the paddle-wheel type located on a crystallographic inversion center. The two Cu^{2+} cations $[\mathrm{Cu} \cdots \mathrm{Cu}=$ 2.6543 (10) \AA] are connected by four 2-nitrobenzoate ligands. The apical positions of the square-pyramidal copper coordination polyhedra are occupied by the water O atoms. The two ethanol solvent molecules are linked to complex molecules via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, which create one-dimensional chains of $R_{2}^{3}(13)$ and $R_{4}^{4}(12)$ rings. A $\pi-\pi$ stacking interaction is observed between symmetry-related benzene rings of the 2-nitrobenzoate anions.

Comment

Different benzoates, especially salicylates and fenamates, are known to play an important role in human medicine (Sorenson, 1976; Weder et al., 2002). Our effort in this field has been targeted to substituted benzoate complexes. Some papers dealing with mononuclear or binuclear copper(II) 2-nitrobenzoate complexes have been published recently (Chi et al., 2006; Stachová, Melník et al., 2006; Stachová, Korabik et al., 2006; Deutsch et al., 2006; Stachová et al., 2004) and they confirm an interesting range of bonding versatility of the 2-nitrobenzoate ligand. Moreover, the co-occurrence of different polymorphic structures was confirmed (Deutsch et al., 2006). We present here a new centrosymmetric binuclear 2-nitrobenzoate-copper(II) complex with water molecules as ligands and ethanol as solvent, $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{4}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$-$2 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ (I) (Fig. 1).

(I)

The Cu^{2+} cation is coordinated by four carboxylate O atoms from four 2-nitrobenzoate anions and one water O atom in a square-pyramidal geometry; the Cu^{2+} cations are bridged by four 2-nitrobenzoate anions. The distance between the two Cu^{2+} cations is $2.6543(10) \AA$, which is similar to that in related Cu^{2+} complexes: two forms of $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{4}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, (II)

Received 21 October 2006
Accepted 29 October 2006

Figure 1
The molecular structure of (I), with the atom numbering scheme [symmetry code: (i) $1-x, 1-y, 1-z$]. Displacement ellipsoids are drawn at the 30% probability level.
and (III) (Deutsch et al. 2006), and $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{4}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$-$2 \mathrm{H}_{2} \mathrm{O}$, (IV) (Stachová et al. 2004). The Cu^{2+} atoms in (I) are each displaced towards their bound water O atom from the $\mathrm{O} 1 / \mathrm{O} 2^{\mathrm{i}} / \mathrm{O} 5 / \mathrm{O}^{\mathrm{i}}$ [symmetry code: (i) $1-x, 1-y, 1-z$] plane by 0.198 (1) \AA. The $\mathrm{Cu}-\mathrm{O}$ (carboxyl) bond distances [1.9657 (12)-1.9922 (12) \AA] are shorter than the $\mathrm{Cu}-\mathrm{O} 1 W$ bond length $[2.1331(15) \AA$] in (I), and they are similar to $\mathrm{Cu}-\mathrm{O}$ (carboxylate) and $\mathrm{Cu}-\mathrm{O}$ (water) bond lengths in (II)(IV).

Within each stack of the title compound, a one-dimensional chain of $R_{2}^{3}(13)$ and $R_{4}^{4}(12)$ (Bernstein et al., 1995) rings parallel to the $b c$ direction is present; the two rings are connected via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Fig. 2). Details of the hydrogen-bonding geometry are given in Table 2.
$\pi-\pi$ stacking interactions (Janiak, 2000) are also present between two symmetry-related adjacent benzene rings (C9$\mathrm{C} 14)$ of the 2-nitrobenzoate anions $\left[C g \cdots C g^{\text {iii }}=3.69 \AA\right.$, where $C g$ is the centroid of the benzene ring; symmetry code: (iii) $-x$, $-y+1,-z$; distance between two benzene ring planes is $3.40 \AA$], similar to those in diaquatetrakis(4-nitrobenzoatoO, O^{\prime})dicopper(II) acetone disolvate (Kristiansson \& Tergenius, 2001).

This structure is completely different from that of (IV) and it is very similar to one of polymorphic pair (II) (Deutsch et al. 2006). Owing to the presence of ethanol within channels along the c axis, the shortest $\mathrm{Cu} \cdots \mathrm{Cu}$ interdimer distance in (I) is 5.933 (1) \AA, while in (II) it is $5.25 \AA$. Similarity was also found in the relative orientation of the benzene rings and the carboxylate groups expressed by the angle $\varphi_{\text {rot }}$ (Kawata et al. 1992). The $\varphi_{\text {rot }}$ angles for (I) are 82.9 (1) and 41.8 (1) ${ }^{\circ}$, and for (II) they are 84.7 and 46.5°.

Experimental

An ethanol solution of copper(II) acetate (1 mmol in ca 15 ml of ethanol) was stirred with 3 -pyridylmethanol (3-pyme, 1 mmol). 2-Nitrobenzoic acid (2 mmol) was then added. The reaction mixture was stirred until the precipitation of a light blue powder product had finished. The product $\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{4}\right)_{2}(3 \text {-pyme })_{2}\right]$ was filtered off and dried at ambient temperature and a turquoise mother liquid was left for crystallization. A mixture of green and blue crystals was obtained from the mother liquid. The green crystals were separated by hand and used for X-ray structure determination.

Crystal data

$\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{4}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
$M_{r}=919.72$

$$
D_{x}=1.711 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Monoclinic, $P 2_{1} / c$
$a=8.326$ (3) \AA 。
$b=20.028$ (6) \AA
$c=10.803$ (3) \AA
$\beta=97.77$ (3) ${ }^{\circ}$
$V=1784.9(10) \AA^{3}$

Data collection

Kuma KM-4 CCD diffractometer

$$
Z=2
$$

Mo $K \alpha$ radiation
$\mu=1.29 \mathrm{~mm}^{-1}$
$T=100(2) \mathrm{K}$
Block, green
$0.59 \times 0.55 \times 0.48 \mathrm{~mm}$
ω scans
Absorption correction: analytical
(CrysAlis RED; Oxford
Diffraction, 2003)
$T_{\text {min }}=0.494, T_{\text {max }}=0.636$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0424 P)^{2}\right. \\
& \quad+1.2345 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.62 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.39 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.081$
$S=1.05$
5144 reflections
270 parameters
H atoms treated by a mixture of independent and constrained refinement

5144 independent reflections 5144 independent reflections
4424 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.027$ $\theta_{\text {max }}=30.0^{\circ}$
22049 measured reflections

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cu}-\mathrm{O} 1 W$	$2.1331(15)$	$\mathrm{Cu}-\mathrm{O} 5$	$1.9664(12)$
$\mathrm{Cu}-\mathrm{O} 1$	$1.9746(12)$	$\mathrm{Cu}-\mathrm{O}^{\mathrm{i}}$	$1.9657(12)$
$\mathrm{Cu}-\mathrm{O} 2^{\mathrm{i}}$	$1.9922(12)$	$\mathrm{Cu}-\mathrm{Cu}^{\mathrm{i}}$	$2.6543(10)$
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 1 W$	$91.37(5)$	$\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 5$	$90.28(5)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Cu}-\mathrm{O} 1 W$	$100.11(5)$	$\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 6^{\mathrm{i}}$	$90.04(5)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Cu}-\mathrm{O} 1 W$	$97.18(6)$	$\mathrm{O}^{\mathrm{i}}-\mathrm{Cu}-\mathrm{O} 5$	$89.56(5)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Cu}-\mathrm{O} 1 W$	$94.38(6)$	$\mathrm{O}^{\mathrm{i}}-\mathrm{Cu}-\mathrm{O}^{\mathrm{i}}$	$87.82(5)$
${\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 2^{\mathrm{i}}}$	$168.45(5)$	$\mathrm{O}^{\mathrm{i}}-\mathrm{Cu}-\mathrm{O}^{\mathrm{i}}$	$168.42(5)$

Symmetry code: (i) $-x+1,-y+1,-z+1$.

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 9-\mathrm{H} 9 \mathrm{O} \cdots \mathrm{O}^{\text {ii }}$	0.84	2.10	2.852 (2)	149
$\mathrm{O} 1 W-\mathrm{H} 1 W \cdots \mathrm{O} 9$	0.84 (1)	1.88 (1)	2.715 (2)	178 (2)
$\mathrm{O} 1 W-\mathrm{H} 2 W \cdots \mathrm{O} 8^{\text {ii }}$	0.84 (1)	2.29 (1)	2.991 (2)	141 (2)

Symmetry code: (ii) $x+1, y, z$.

All H atoms of $\mathrm{C}-\mathrm{H}$ (aromatic, methylene and methyl) bonds were placed in calculated positions $(0.95,0.99$ and $0.98 \AA$, respectively) and refined using a riding model; isotropic displacement parameters were fixed $\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}\right.$ (aromatic or methylene C) or $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {iso }}($ methyl C $\left.)\right]$. The hydroxyl H atom was placed in a calculated position $(\mathrm{O}-\mathrm{H}=0.84 \AA) ; U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {iso }}(\mathrm{O})$. The water H atoms were located in a difference map and refined with the $\mathrm{O}-\mathrm{H}$ distances restrained to $0.84(1) \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O})$.

Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis RED (Oxford Diffraction, 2003); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Sheldrick, 1998); software used to prepare material for publication: enCIFer (Allen et al., 2004).

We thank the Scientific Grant Agency of the Ministry of Education of the Slovak Republic and the Slovak Academy of Sciences for financial support (1/2452/05), and the Research and Development Support Agency for financial support (APVT-20-005504).

References

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Chi, W.-P., Zhang, M. \& Wang, H. (2006). Acta Cryst. E62, m1134-m1135.
Deutsch, Z., Rubin-Preminger, J. M., Bernstein, J. \& Becker, J. Y. (2006). CrystEngComm, 8, 41-50.
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.

Figure 2
The $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (dashed lines) and $\pi-\pi$ stacking interaction in the packing of (I), viewed approximately along the a axis [symmetry code: (ii) $x+1, y, z$].

Kawata, T., Uekusa, H., Ohba, S., Furukawa, T., Tokii, T., Muto, Y. \& Kato, M. (1992). Acta Cryst. B48, 253-261.

Kristiansson, O. \& Tergenius, L.-E. (2001). J. Chem. Soc. Dalton Trans. pp. 1415-1420.
Oxford Diffraction (2003). KM-4 CCD/Xcalibur Software, including CrysAlis $C C D$ and CrysAlis RED. Versions 1.171. Oxford Diffraction Poland, Wrocław, Poland.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Sorenson, J. R. J. (1976). J. Med. Chem. 19, 135-148.
Stachová, P., Korabik, M., Koman, M., Melník, M., Mrozinski, J., Głowiak, T., Mazúr, M. \& Valigura, D. (2006). Inorg. Chim. Acta, 359, 1275-1281.
Stachová, P., Melník, M., Korabik, M., Mrozinski, M., Koman, M., Głowiak, T. \& Valigura, D. (2006). Inorg. Chim. Acta. In the press. (DOI 10.1016/ j.ica.2006.08.019.)

Stachová, P., Valigura, D., Koman, M., Melník, M., Korabik, M., Mroziński, J. \& Głowiak, T. (2004). Polyhedron, 23, 1303-1308.
Weder, J. E., Dillon, C. T., Hambley, T. W., Kennedy, B. J., Lay, P. A., Biffin, J. R., Regtop, H. L. \& Davies, N. M. (2002). Coord. Chem. Rev. 232, 95-126.

[^0]: © 2006 International Union of Crystallography All rights reserved

